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TOPIC 3: POINT ESTIMATION 

 

3.1. KEY ISSUES. PROPERTIES OF POINT ESTIMATORS 

KEY ISSUES 

� In parametric inference we apply point estimation in order to 

assign a single value to the unknown parameter 

� Some probabilistic models have a single parameter:  

B(1,p)  χ2
n  tn   P(λ) 

� Other have more than one:  

  B(n,p)  U(a,b)  N(µ,σ)   Fm,n 

� In order to estimate parameters we use estimators 

� An estimator is a statistic aimed at giving values to a parameter 

� A statistic is any function of sampling data 

� An estimator is a random variable before selecting the sample 

(a priori) and it will become a value once the sample has been 

obtained (a posteriori) 

� The population mean and the population variance are key 

parameters to estimate 

� By analogy, the sample mean, the sample variance and the 

bias-corrected sample variance are going to be candidates as 

point estimators   

� To know their sampling distribution will be an important 

matter (already shown in chapter 2) 

� In summary, the point estimator process will have the next 
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steps: 

1.- We have a population with one or more unknown 

parameters (for instance a normal random variable with 

unknown mean and variance of 4). 

2.- We want to assign a value to the unknown parameters (the 

mean in the previous example) 

3.- We think in obtaining a sample �(��, ��, ��…�	) based on 

a probabilistic method. In this subject we will apply only 

s.r.s. We would like the size n be big enough (however for 

simplicity in our example we will take n=4) 

4.- Then we choose a point estimator ��(��, ��, ��…�	) (the 

sample mean in our example)  

5.- The simple random sample is obtained (in our case: x1=1, 

x2=1, x3=2, x4=2). 

6.- The sample is incorporated in the estimator in order to come 

up with an estimate (in our example: 

     
̂(1,1,2,2) = �̅ = �������
� = 1.5) 

7.- That estimate is the value to be assigned to the unknown 

parameter µ.  

 

� However, how to choose the best estimator among the infinite 

statistics? We will use that estimator verifying certain 

properties (unbiased estimator, efficient estimator, 

consistency and other) 

� Thanks God there are statistical methods to find out 
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estimators fulfilling some or many of those properties 

� Two or those methods are the Maximum Likelihood 

Estimation (MLE) and the Generalized Method of Moments 

(GMM)  

Next we will approach the properties of estimators and then the 

methods for deriving good estimators. 

 

PROPERTIES OF POINT ESTIMATORS 

 

�  UNBIASED ESTIMATOR 

o θ* is an unbiased estimator of a parameter θ if it verifies, for 

any n the following rule: 

�(�∗) = � 
 

o This property is referred to the behavior of the estimator on 

average, considering all the values the estimator may take.  

o Otherwise, we have a biased estimator. The bias �(�∗) is 

defined as it follows: 

�(�∗) = �(�∗) − � 

 

o The bias can be either positive or negative (when the bias is 

nule the estimator is unbiased)  

 

 



Corporate Statistics II       Topic 3 
 

 

Grado en A.D.E. Bilingüe   Prof. Julio Hernández           4 

Some properties: 

o Noncentral sampling moments ar are unbiased estimators of 

respective noncentral population moments µr. 

o Un estimator is asymptotically unbiased if the bias 

approaches cero when n approaches infinitum 

lim	→��  �∗!= 0
→ �∗	$%	&%'()*)$+&,,'	-./$&%01 

 

o Let θ1* and θ2* be two unbiased estimators of θ. Then a 

convex linear combination of them will produce another 

unbiased estimador of θ:  

* * *

3 1 2(1 )c cθ θ θ= ⋅ + − ⋅  

o The following estimators of µ are unbiased: 

1 1

* 1
n n

i i i

i i

c x donde cµ
= =

= ⋅ =∑ ∑  

xi being the elements of a s.r.s. 

 

� EFFICIENCY 

o Efficiency is referred to the variability of the estimator. The 

lower the dispersion the higher the efficiency, and viceversa, 

the higher the variability the lower the efficiency.   

o Two concepts must be considered: the most efficient 

estimator and the relative efficiency. 

o Among all unbiased estimators of a given parameter, the 
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Minimum Variance Unbiased Estimator (MVUE) will be 

that one with the smallest variance. This will be the most 

efficient estimator. 

o Relative efficiency arises when comparing the variances of 

two estimators of a given parameter 

o An estimator θ1* is more efficient than θ2* if, for any 

size“n”, the variance of the former is equal or lower than the 

variance of the latter: 

* *

1 2( ) ( )V Vθ θ≤  

 

� MEAN SQUARE ERROR (MSE) 

o Let θ1* and θ2* be two point estimators of θ: 

�(��∗) < �(��∗)				/-)			3(��∗) > 3(��∗) 
 

Which estimator must I choose? 

o Answer: that one with the lowest MSE: 

 

56�(�∗) = �7�∗ − �8� = 3(�∗) + �(�∗)� 

 

� CONSISTENCY 

o θ* is a consistent estimator of θ when it approaches the 

parameter as the sample size “n” increases.  

o This property is verified whenever two conditions take 

place as sample size “n” approaches infinitum:  
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( *)

( *) 0

E
if n

V

θ θ

θ

→
→ ∞

→  

o This property must be required whenever efficient unbiased 

estimators are not available.  

 

3.2. GENERALIZED METHOD OF MOMENTS (GMM) 

 

� It assigns as GMM estimator of a parameter, its analogous in 

the sample 

� The method is based on the fact that, in general, the noncentral 

population moment µr depends on the vector of unknown 

parameters:  

o In a discrete random variable: 

1

1

( ,... ) ( )
N

r

r k i r

i

X P Xµ θ θ ξ
=

= ⋅ =∑  

o In a continuous random variable: 

1 1( ,... ) ( , ,... )r

r k kX f X dXµ θ θ θ θ
+∞

−∞
= ⋅∫  

 

Steps: 

� First, a s.r.s. of size n is considered 

� Then the noncentral sampling moments ar are equalled to their 

corresponding noncentral population moments µr resulting a 

system of k equations with k unknowns: 
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1 1 1

1

( ,... )

.......

( ,... )

k

k k k

a

a

µ θ θ

µ θ θ

=

=
 

� Whose solutions give the GMM estimators of the k parameters: 

  

* *

1 1 1

* *

1

( ,... )

.......

( ,... )

k

k k k

a a

a a

θ θ

θ θ

=

=
 

� Properties: 

o Consistency 

o In general, they are neither unbiased nor efficient 

estimators.  

� The main advantage of this method is its simplicity. 

� Disadvage: it does not use all the information in the sample, 

provided that it ignores the probability distribution of the 

population under study.  

 

3.3. MAXIMUM LIKELIHOOD ESTIMATORS (MLE) 

� Maximum likelihood estimation is based on the principle that 

usually it happens what is most likely to happen 

� What it happens is the Likelihood Function (LF), which is the 

sample joint distribution for a given s.r.s. of size “n” 

fluctuating with the parameters values 

� That estimator maximizing the likelihood function is the MLE, 

hence producing the highest likelihood for a given s.r.s. of size 

“n”, this being what is most likely to happen.  
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� Stages: 

o Let ξ be a random variable with probability distribution 

P(ξ = x;θ) or with density function f(x;θ) depending on ξ 

being either a discrete random variable or a continuous 

one and being θ an unknown parameter 

o A s.r.s. �(��, ��, ��…�	) of size n is selected from the 

population where: 

�:~$. $. 1. <(= = �; �)					*?				�:~$. $. 1. @(�; �) 
o In the discrete case, the corresponding sample joint 

distribution will give the probability of that sample: 

1 1 1( ) ( ) ( ; ) ( ; ) ( ; ) ( ; )n n nP X P x x P x P x f x f xξ θ ξ θ θ θ= ⋅⋅ ⋅ = = ⋅⋅ ⋅ = = ⋅ ⋅ ⋅

 

o In the continuos case, the sample joint distribution is 

given by the joint density function:  

1 1 1( ) ( ) ( ; ) ( ; ) ( ; )n n nf X f x x f x x f x f xθ θ θ= ⋅⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅  

Do not confuse with the probability of the sample in this 

case: 

1 1 1 1 1( ) ( ; , ) ( ; ) ( ; )n n n n nP X P x x dx x x dx f x dx f x dxξ ξ θ θ= < ≤ + ⋅⋅ ⋅ < ≤ + = ⋅⋅ ⋅

( )f X dX=  

o Then giving θ different values, either in P(X) or f(X), we 

will obtain different outcomes for the sample joint 

distribution and this is what we call LF:  

A(�; �) = @(��; �) ∙ @(��; �) ∙∙∙ @(�	; �) = C@(�:; �)
	

:D�
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o Notice that the sample X is fixed and the variable is θ 

o In consequence, θ1 is more likely than θ2 if LF is higher 

with θ1 than with θ2 

o Then MLE is obtained by maximizing LF: 

max ( ; )L X
θ

θ  

o In order to make calculus easier, we take natural 

logarithms and maximize this last function:  

,(�; �) = ,.A(�; �) 
maxG ,(�; �) =max,.A(�; �)

G
 

o Then we apply the necessary condition for a maximum:  

( ; )
0

l X θ

θ

∂
=

∂
 

o And finally the sufficient condition for a maximum: 

2

2

( ; )
0

l X θ

θ

∂
<

∂
 

o If the function is not derivable this method cannot be used 

� Excellent properties in large samples: 

o MLEs are asymptotically normally distributed  

o MLEs are asymptotically unbiased  

o MLEs are asymptotically minimum variance  


